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Motivation

Fidelity measures of a numerical discretization method.

Numerical fidelity: convergence and stability indicate how
well the mathematics of the PDE are represented by the
numerical method.

Physical fidelity: how well the physics of the system are
preserved by the numerical method.

Preserving the key physical quantities during the numerical
solution is important to avoid non-physical numerical
artefacts.

Samtaney, PPPL, Jan 10 2017 CFD with DEC



Motivation

Key physical quantities to preserve:

Conservation of primary quantities: mass, momentum and
energy.

Conservation of secondary quantities:[J. Perot, Annu. Rev. Fluid Mech. 2011]

Vorticity: e.g. important for turbulence and shallow water
simulations.
Kinetic energy: large-eddy simulation of turbulent flow.
Entropy: compressible flow simulations.
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The covolume method

The covolume method, originally
introduced by Nicolaides (1989) and
Hall et al. (1991), is a low order
method that is free of spurious modes.

The covolume method convergence
was estimated by Nicolaides (1992) to
be of second order rate for
structured/semi-structured meshes
and first order accurate otherwise.
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The covolume method

The local/global conservation properties of the covolume
method were later revealed by Perot (2000).

The conservative behavior of the covolume method is
attributed to the discrete differential operators that mimic the
behavior of their smooth counterparts.

The resulting discrete system can be manipulated into discrete
conservation statements for key physical quantities.

The covolume method conserves mass, momentum, vorticity
and kinetic energy.
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What is Exterior Calculus?

Exterior Calculus is an alternative language to Vector Calculus
in describing mathematical formula in a more generalized
arbitrary order sense.

Instead of scalars, vectors and tensors in Vector Calculus, we
have k−forms in Exterior Calculus.

For the differential operators:

(d) is equivalent to (∇)

(∗d) is equivalent to (∇×)

(∗d∗) is equivalent to (∇⋅)

(. ∧ .) is equivalent to (. × .)
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Why DEC?

1- Both Exterior Calculus and its discretization (DEC) are
formulated for curved surfaces.

A DEC discretization of a physical problem is applicable to both
flat and curved domains without any modifications.
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Why DEC?

2- The DEC operators are generally mimetic.

Mimetic behavior means that the discrete operators follow the
same rules/identities governing the smooth operators (i.e.
∇ ⋅ ∇ ×ψ = 0).

The mimetic discrete operators usually result in a conservative
discretization that conserves many of the primary and secondary
physical quantities in the governing equations.

This will be further demonstrated in the incompressible Navier
Stokes discretization.
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Incompressible Navier-Stokes equations:

∂u

∂t
− µ∆u + (u.∇)u +∇p = 0

∇.u = 0

Using the vector identities:

∆u = ∇(∇.u) − ∇ × (∇ × u)

(u.∇)u =
1

2
∇(u.u) − u × (∇ × u)

Define the dynamic pressure: pd = p + 1
2(u.u)

∂u

∂t
+ µ∇×∇× u − u × (∇ × u) + ∇pd = 0

∇.u = 0
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Incompressible Navier-Stokes equations in exterior calculus
notation:

∂u

∂t
+ µ∇×∇× u − u × (∇ × u) + ∇pd = 0

∇.u = 0

For any vector field u and a scalar field f :

(∇ ×∇ × u)♭ = (−1)N+1
∗ d ∗ du♭,

(u × (∇ × u))♭ = (−1)N+1
∗ (u♭ ∧ ∗du♭),

(∇.u)♭ = ∗d ∗ u♭,

(∇f )♭ = df

∂u♭

∂t
+ (−1)N+1µ ∗ d ∗ du♭ + (−1)N+2

∗ (u♭ ∧ ∗du♭) + dpd = 0,

∗ d ∗ u♭ = 0
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An alternative derivation:

Starting from Navier-Stokes equation in coordinate invariant form
(See Abraham, Marsden, Ratiu, ”Manifolds, Tensor Analysis and
Applications”)

∂u♭

∂t
+ µ(δd + dδ)u♭ + £uu

♭
−

1

2
d(u♭(u)) + dp = 0

where δ is the codifferential operator defined as
δ = (−1)N(k−1)+1 ∗ d∗.
Using Cartan homotopy formula:

£uu
♭
= diuu

♭
+ iudu

♭
= d(u♭(u)) + iudu

♭

∂u♭

∂t
+ µδdu♭ + iudu

♭
+

1

2
d(u♭(u)) + dp = 0.
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An alternative derivation: Cont.

∂u♭

∂t
+ µδdu♭ + iudu

♭
+

1

2
d(u♭(u)) + dp = 0.

Defining the dynamic pressure 0-form as pd = p + 1
2(u

♭(u)).

Substitute with δ = (−1)N+1 ∗ d∗.

Substitute for the contraction with [A. Hirani, PhD Dissertation,

Caltech (2003)]

ixα = (−1)k(N−k) ∗ (∗α ∧ x♭)

∂u♭

∂t
+ (−1)N+1µ ∗ d ∗ du♭ + (−1)N−2

∗ (u♭ ∧ ∗du♭) + dpd = 0.

Applying the exterior derivative (d) to the above equation

∂du♭

∂t
+ (−1)N+1µd ∗ d ∗ du♭ + (−1)Nd ∗ (u♭ ∧ ∗du♭) = 0.
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Domain discretization:

The domain Ω is approximated by the simplicial complex K .

A k-simplex is denoted by σk = [v0, ..., vk] ∈ K .

The circumcentric dual to the simplicial complex K is the dual
complex ⋆K .

For a primal k-simplex σk ∈ K , its dual is an (N − k)-cell
denoted by ⋆σk ∈ ⋆K
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Discrete Exterior Calculus:

Discrete differential forms: a discrete form
can be thought as the integration of the
smooth form over a discrete mesh object;
i.e. line, area or volume.

For example, for the smooth velocity 1-form
u♭, its discretization can be defined:

on primal edges σ1 as v = ∫σ1 u d l.
on dual edges ⋆σ1 as u = ∫⋆σ1 u d l.
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Discrete Exterior Calculus:

The space of discrete k-forms defined on primal and dual mesh
complexes is denoted by C k(K) and Dk(⋆K), respectively.

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

D2(⋆K)
−dT0
←ÐÐÐ D1(⋆K)

dT1
←ÐÐÐ D0(⋆K)

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)
d2

ÐÐÐ→ C 3(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

×
×
×
Ö
∗3

D3(⋆K)
dT0

←ÐÐÐ D2(⋆K)
dT1

←ÐÐÐ D1(⋆K)
dT2

←ÐÐÐ D0(⋆K)
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Examples of DEC operators:

d0β =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0
0 −1 1 0
1 0 −1 0
0 −1 0 1
0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0

β1

β2

β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d1 = [
1 1 1 0 0
0 −1 0 1 1

]

∗1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣⋆σ1
0 ∣

∣σ1
0 ∣

0 0 0 0

0
∣⋆σ1

1 ∣

∣σ1
1 ∣

0 0 0

0 0
∣⋆σ1

2 ∣

∣σ1
2 ∣

0 0

0 0 0
∣⋆σ1

3 ∣

∣σ1
3 ∣

0

0 0 0 0
∣⋆σ1

4 ∣

∣σ1
4 ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Discrete Exterior Calculus

For the discrete wedge product, we use the definition in [ Hirani Ph.D.

dissertation (2003)] for primal-primal wedge product:

The wedge product between a discrete primal
1-form α and a discrete primal 0-form β defined
over a primal edge [0,1] is

⟨α ∧ β, [0,1]⟩ =
1

2
⟨α, [0,1]⟩(⟨β, [0]⟩ + ⟨β, [1]⟩).

The discrete wedge product expression for the
whole mesh:

1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0 α0 0 0
0 α1 α1 0
α2 0 α2 0
0 α3 0 α3

0 0 α4 α4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0

β1

β2

β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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2D DEC discretization:

The discretization is carried out for the vorticity form of N-S
equations.

∂du♭

∂t
+ (−1)N+1µd ∗ d ∗ du♭ + (−1)Nd ∗ (u♭ ∧ ∗du♭) = 0.

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

D2(⋆K)
−dT0
←ÐÐÐ D1(⋆K)

dT1
←ÐÐÐ D0(⋆K)

−dT0
Un+1 −Un

∆t
+ µdT0 ∗1 d0 ∗

−1
0 [−dT0 U + dbV ]

− dT0 ∗1 Wv ∗
−1
0 [−dT0 U + dbV ] = 0.
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2D DEC discretization: Cont.

−dT0
Un+1 −Un

∆t
+ µdT0 ∗1 d0 ∗

−1
0 [−dT0 U + dbV ]

− dT0 ∗1 Wv ∗
−1
0 [−dT0 U + dbV ] = 0.

Substitute with U = ∗1d0Ψ

−
1

∆t
dT0 ∗1 d0Ψn+1

− µdT0 ∗1 d0 ∗
−1
0 dT0 ∗1 d0Ψ

+ dT0 ∗1 Wv ∗
−1
0 dT0 ∗1 d0Ψ = F .

F = 1
∆td

T
0 Un − µdT0 ∗1 d0 ∗

−1
0 dbV + dT0 ∗1 Wv ∗

−1
0 dbV
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2D DEC discretization: Cont.

The linear system is solved in two steps as a predictor-corrector
method.

1 First, we advance the system explicitly by a half time step

[−
1

0.5∆t
dT0 ∗1 d0]Ψn+ 1

2

= F + [µdT0 ∗1 d0 ∗
−1
0 dT0 − dT0 ∗1 W

n
v ∗

−1
0 dT0 ]Un

Ψn+ 1
2 ⇒ Un+ 1

2 = ∗1d0Ψn+ 1
2 ⇒ W

n+ 1
2

v

2 Then solve the linear system semi-implicitly

[−
1

∆t
dT0 ∗1 d0 − µd

T
0 ∗1 d0 ∗

−1
0 dT0 ∗1 d0

+ dT0 ∗1 W
n+ 1

2
v ∗

−1
0 dT0 ∗1 d0]Ψ

n+1
= F

The evaluation of the tangential velocity at (n + 1
2 ) was shown

[Perot (2000)] to be necessary for kinetic energy conservation.
Samtaney, PPPL, Jan 10 2017 CFD with DEC



Conservation properties: Mass conservation

U = ∗1d0Ψ

The discrete continuity equation is:

∗2d1 ∗
−1
1 U = 0

[∗2d1∗
−1
1 ][∗1d0]Ψ = ∗2d1d0Ψ = 0

The developed formulation guarantees the
mass conservation up to the machine
precision, regardless of the error incurred
during the linear system solution.
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Conservation properties: Vorticity conservation

−
dT0 Un+1 − dT0 Un

∆t
+µdT0 ∗1d0∗

−1
0 [−dT0 U]−dT0 ∗1Wv ∗

−1
0 [−dT0 U] = 0

−
dT0 Un+1 − dT0 Un

∆t
+ µdT0 [∗1d0X ] − dT0 [∗1WvX ] = 0

The vorticity out-flux from a dual cell
boundary is exactly equal to the
vorticity in-flux to the neighboring
dual cell.

The vorticity is conserved locally and
globally up to the machine precision.
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Test cases: Driven cavity

The driven cavity flow is
simulated at Re = 1000.

The simulations are carried out
on a Delaunay mesh and a
structured-triangular mesh with
32482 and 32258 elements,
respectively → almost the same
resolution as a 128 × 128
Cartesian mesh.

The time step ∆t = 0.1, and the
steady solution is attained at
almost T = 100.
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Test cases: Driven cavity

Figure: Cross-section of the steady velocity profile (T = 100) at the two
domain center lines for driven cavity test case at Re = 1000. The
simulation results are compared with Ghia (1982).
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Results: Taylor-Green vortices

The decay of Taylor-Green
vortices with time has an
analytical solution that for the
2D case is expressed as

ux = − cos(x) sin(y)e−2νt

uy = sin(x) cos(y)e−2νt

The simulation is conducted
using a Delaunay mesh
consisting of 50852 elements, a
time step ∆t = 0.1 and
kinematic viscosity ν = 0.01.

Periodic boundary conditions
applied on all domain
boundaries.
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Results: Taylor-Green vortices

(a) (b)

Figure: The vorticity contour plot for Taylor-Green vortices at time (a)
T = 0, (b) T = 10.
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Results: Taylor-Green vortices

(a) (b)

Figure: Cross-section of the velocity x and y-components profile at the
two domain center lines for Taylor-Green vortices at time T = 10.
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Test cases: Poiseuille flow

The velocity 1-form u (flux) convergence is of a second order
rate for the structured-triangular mesh case, and with a first
order rate unstructured meshes.
The velocity vector converges in the first order fashion due to
its first order interpolation scheme.
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Test cases: Double shear layer

The initial flow for double shear layer
represents a shear layer of finite thickness
with a small magnitude of vertical velocity
perturbation

ux =

⎧⎪⎪
⎨
⎪⎪⎩

tanh((y − 0.25)/ρ), for y ≤ 0.5,

tanh((0.75 − y)/ρ), for y > 0.5,

uy = δ sin(2πx)

with ρ = 1/30 and δ = 0.05.

The simulation is carried out for an inviscid flow (µ = 0).

Five simulations are conducted using a time step of
∆t = 0.001 on structured-triangular meshes with number of
elements equal to 3042, 12482, 32258, 50562 and 204800.

Periodic boundary conditions applied on all domain
boundaries.
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Test cases: Double shear layer
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Test cases: Double shear layer

The kinetic energy is calculated as ∫Ω u.u dΩ.

The relative kinetic energy error (KE(0)−KE(T)

KE(0) ) is calculated
at simulation time T = 2.0.
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Results: Vortex leapfrogging
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Test cases: Taylor vortices

The vorticity distribution for each Taylor
vortex is expressed as [A. McKenzie, PhD

Dissertation, Caltech (2007)]

ω(x , y) =
G

a
(2 −

r2

a2
) exp(0.5(1 −

r2

a2
))

with G = 1.0, a = 0.3.

The domain is initialized with two vortices
separated by a distance of 0.8.

The simulations are carried out for an inviscid flow (µ = 0) on
a mesh consisting of 132204 equilateral triangular element,
using various time steps in the range [1.0 − 0.002].

Periodic boundary conditions applied on all domain
boundaries.
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Test cases: Taylor vortices

The relative kinetic energy error (KE(0)−KE(T)

KE(0) ) is calculated at
simulation time T = 20.0.
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Test cases: Taylor vortices on a spherical surface

A unit sphere surface is initialized with two
vortices, separated by a distance of 0.4,
having the distribution

ω(x , y) =
G

a
(2 −

r2

a2
) exp(0.5(1 −

r2

a2
))

with G = 0.5, a = 0.1.

The simulation is carried out for an inviscid flow (µ = 0) using
a mesh containing 327680 triangular elements, with various
time steps in the range [1.0 − 0.05].
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Test cases: Taylor vortices on a spherical surface

The relative kinetic energy error (KE(0)−KE(T)

KE(0) ) is calculated at
simulation time T = 10.0.
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Results: Vortices ring on a spherical surface

Consider N equidistant point vortices,
having the same strength, positioned on a
circle with fixed latitude on a spherical
surface [Polvani et. al (1993)].

It was shown analytically that the vortices
will rotate around the z-axis in a stable
fashion given that the circle’s latitude θ < θc
and the number of vortices N ≤ 7.

For N = 6, the critical polar angle θc ∼ 0.464.

Figure: [Vankerschaver et. al

(2014)]

Samtaney, PPPL, Jan 10 2017 CFD with DEC



Results: Vortices ring on a spherical surface

The point vortices are replaced with vortices
having the distribution

ω =
τ

cosh2(3r
a )

with τ = 3.0 to be the vortex strength,
a = 0.15 is the vortex radius.

The vortices are placed on a unit sphere at
latitude θ = 0.4.

The spherical surface is meshed with 81920
elements, and the simulation is conducted
for an inviscid flow (µ = 0) with a time step
∆t = 0.005.

Samtaney, PPPL, Jan 10 2017 CFD with DEC



Results: Vortices ring on a spherical surface

(a) (b)

Figure: The vorticity contour plot for 6 vortices on a spherical surface at
latitude θ = 0.4 at time: (a) T=0.0 and (b) T=36.0.

The cyclic motion of the vortices can be captured by monitoring

the relative solution change ( ∣∣U(t)−U(0)∣∣
∣∣U(0)∣∣ ) w.r.t. the initial solution.
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Results: Vortices ring on a spherical surface

The relative solution change ( ∣∣U(t)−U(0)∣∣
∣∣U(0)∣∣ ).
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Results: Vortices ring on a spherical surface

The relative change in the kinetic energy at time T = 36 is
KE(T=0)−KE(T=36)

KE(T=0) = 9.0 × 10−6.
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Test cases: Flow past a cylinder, Re = 40

Figure: The vorticity contour plot, Re = 40.
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Test cases: Flow past a cylinder, Re = 40

Figure: The pressure coefficient calculated on the cylinder surface.
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Test cases: Flow past a cylinder, Re = 40

Reference CD LW a b θ

Chiu et al. 1.52 2.27 0.73 0.60 53.6
Gautier et al. 1.49 2.24 0.71 0.59 53.6
Brehm et al. 1.51 2.26 0.72 0.58 52.9
Marouf et al. 1.54 2.25 0.71 0.59 53.7
Present 1.51 2.26 0.72 0.60 53.8
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Test cases: Flow past a cylinder, Re = 100

Samtaney, PPPL, Jan 10 2017 CFD with DEC


Re100movie.mpg
Media File (video/mpeg)



Test cases: Flow past a cylinder, Re = 100

Figure: The drag and lift coefficients calculated on the cylinder surface
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Test cases: Flow past a cylinder, Re = 100

Drag coefficient and the Strouhal number for the flow over a
circular cylinder at Re = 100.

Reference CD St
Chiu et al. 1.35±0.0120 0.167
Le et al. 1.37±0.0090 0.160
Brehm et al. 1.32±0.0100 0.165
Russell and Wang 1.38±0.0070 0.172
Liu et al. 1.35±0.0120 0.165
Marouf et al. 1.34±0.0089 0.166
Present 1.31±0.0080 0.175

We are currently trying finer meshes and bigger domains.
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Hodge star operators for non-Delaunay meshes:

DEC discretizations require a dual mesh, which is usually
circumcentric.

The circumcentric dual mesh is well-defined only on Delaunay
meshes.

(a) (b)

Figure: The circumcentric dual mesh defined on (a) Delaunay, and (b)
non-Delaunay simplicial mesh.
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The barycentric dual mesh:

For non-Delaunay meshes, a barycentric dual mesh can be used.

(a) (b)

Figure: A non-Delaunay simplicial mesh with (a) circumcentric, and (b)
barycentric dual mesh.
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Which Hodge star operators need redefinition?

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

D2(⋆K)
−dT0
←ÐÐÐ D1(⋆K)

dT1
←ÐÐÐ D0(⋆K)

The Hodge star operators that need to
be redefined are ∗1 and its inverse ∗−1

1 .

We focus here only at the discrete
operator ∗1.
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Discrete definitions for the Hodge operator ∗1:

The circumcentric definition:

[∗1]
C
ii =

∣ ⋆ σ1
i ∣

∣σ1
i ∣
.

The Galerkin definition:

[∗1]
G
ij = ∫

σ2
⟨W

(σ2
)

σ1
i

,W
(σ2

)

σ1
j

⟩α.

W
(σ2

)

[vi ,vj ]
= µi dµj − µj dµi .
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Discrete definitions for the Hodge operator ∗1:Cont.

The barycentric definition: [Auchmann & Kurz (2006)]

u(σ2
)
= ∑
σ1
i ≺σ

2

uσ1
i
W

(σ2
)

σ1
i

.

w (σ2
)
= ∗u(σ2

)
= ∑
σ1
i ≺σ

2

uσ1
i
∗W

(σ2
)

σ1
i

= ∑
σ1
i ≺σ

2

uσ1
i
W

(σ2
)∗

σ1
i

.

w
⋆σ1

i
= ∑
σ2
k

∑
σ1
j ≺σ

2
k

uσ1
j
W

(σ2
k)∗

σ1
j

(⋆σ1
i ∩ σ

2
k).

⟨⋆σ1
i ∩ σ

2
k ,x⟩ = ∣σ2

k ∣W
(σ2

k)∗

σ1
i

(x).

[∗1]
B
ij = ∣σ2

∣ ⟨W
(σ2

)∗

σ1
i

,W
(σ2

)∗

σ1
j

⟩ .
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Numerical experiments:

Convergence tests are carried out for scalar Poisson and
incompressible Navier-Stokes equations solutions in 2D.

The simulations are carried out for:
1 Five unstructured Delaunay meshes (created independently).
2 Sequence of five sequentially divided non-Delaunay meshes.
3 Five structured-triangular meshes (isosceles right triangles).
4 Five highly-distorted non-Delaunay meshes.

The experiments compare the circumcentric, the Galerkin, and
the barycentric Hodge operators.
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Sample meshes:
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Scalar Poisson equation:

Solve ∗
−1
0 [−dT0 ] ∗1 d0p = φ , p is defined on the primal nodes.

Figure: The numerical convergence of the L2 error of p for the scalar
Poisson Eq. with Neumann boundary conditions.
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Incompressible Navier-Stokes:
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The computational cost:

The increase in the computational cost is moderate.

(a) (b)

Figure: (a) The number of non-zeros in the global matrices. (b) The
solution time (in seconds) for various mesh sizes.
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The limitations of the barycentric Hodge operator:

The barycentric Hodge operator ∗1 has almost five nonzero
entries in each row. Therefore, its inverse operator ∗−1

1 will
not be sparse.

The inverse Hodge star operator ∗−1
1 is required to solve:

The incompressible N-S equations using velocity-pressure
formulation.
The scalar Poisson equation to calculate the pressure in
incompressible N-S solutions.
The incompressible single fluid resistive MHD equations.

The DEC solution of such problems is currently limited to
Delaunay meshes (with circumcentric dual).
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Hybrid discrete Hodge star operator:

Even for domains with complex geometry, it is not difficult to
generate high quality mesh that, even if was subdivided, most
of its triangles will remain Delaunay.

Proposal: Use a hybrid dual mesh
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Hybrid dual mesh:

Only two pairs of triangle are non-Delaunay.
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Hybrid dual mesh:

Only for these non-Delaunay triangles, changes to barycentric.
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Hybrid dual mesh:

Change also for some of the neighbors.
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The hybrid Hodge star operator ∗1:

For Edges that have a circumcentric
dual edge:

[∗1]
H
ii =

∣ ⋆ σ1
i ∣

∣σ1
i ∣
.

Otherwise, interpolate through
Whitney maps:

[∗1]
H
ij = ∑

σ2
k

W
(σ2

k)∗

σ1
j

(⋆σ1
i ∩ σ

2
k),

where the summation is over the
triangles σ2

k neighbor to the edge σ1
i .
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The inverse hybrid Hodge star operator ∗−1
1 :

The hybrid Hodge star operator can
be represented as:

[∗1]
H
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

D0 0

0
D1 0

M0 M1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The inverse matrix ∗−1
1 can then be

computed as:

[∗
−1
1 ]

H
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

D−1
0 0

0
D−1

1 0

−M−1
1 M0D

−1
1 M−1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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Test meshes:

We start with Delaunay mesh.

Select a random edge, move the
neighbor triangles apexes towards the
edge’s midpoint till the triangles pair
become non-Delaunay.

Repeat until a specific ratio of edges
with non-Delaunay triangles pair is
reached.
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Test meshes:

Edges with
non-Delaunay
triangles pair

Edges interpolated
using Whitney

based
interpolation

non-Delaunay mesh 1 1% ∼ 6%
non-Delaunay mesh 2 2% ∼ 13%

non-Delaunay mesh 3 5% ∼ 32%
non-Delaunay mesh 4 7% ∼ 43%

Samtaney, PPPL, Jan 10 2017 CFD with DEC



Convergence of the hybrid Hodge operator ∗1:

Solving the incompressible N-S equation:

Figure: The numerical convergence of the L2 error of the velocity 1-form.
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Convergence of the hybrid Hodge operator ∗1:

Solve ∗
−1
0 [−dT0 ] ∗1 d0p = φ , p is defined on the primal nodes.

Figure: The numerical convergence of the L2 error of p for the scalar
Poisson Eq. with Neumann boundary conditions.
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Convergence of the inverse hybrid Hodge operator ∗−1
1 :

Solve ∗2d1 ∗
−1
1 dT1 p = φ , p is defined on the dual nodes.

Figure: The numerical convergence of the L2 error of p for the scalar
Poisson Eq. with Neumann boundary conditions.
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The matrices sparsity:

The % matrix density = no. of nonzero entries
total number of matrix entries × 100

(a) (b)

Figure: The % matrix density of the (a) the ∗−1
1 matrix, and (b) the

global mass matrix.
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The solution time:

Figure: The scalar Poisson equation solution time in seconds.
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DEC discretization of MHD equations:

The governing equations for single-fluid resistive
magnetohydrodynamics are:

∂u

∂t
−

1

Re
∆u + (u.∇)u +∇p +B × (∇ ×B) = 0,

∂B

∂t
−

1

Re Pm
∆B −∇ × (u ×B) = 0,

∇.u = 0,

∇.B = 0,
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MHD equations in exterior calculus notation:

The equations in exterior calculus notation in 2D are:

∂u♭

∂t
−

1

Re
∗ d ∗ du♭ + ∗(u♭ ∧ ∗du♭)

− ∗(∗B♭
∧ ∗d ∗B♭

) + dpd = 0,

∂B♭

∂t
−

1

Re Pm
d ∗ d ∗B♭

+ d ∗ (u♭ ∧ ∗B♭
) = 0,

∗ d ∗ u♭ = 0,

∗ d ∗B♭
= 0.
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DEC discretization of MHD equations:

Define u and v as the discrete dual and primal 1-forms.

Define B and b as the discrete primal and dual 1-forms.

∂u

∂t
−

1

Re
∗1 d0 ∗

−1
0 [−dT0 ]u + ∗1(v ∧ ∗

−1
0 [−dT0 ]u)

− ∗1( ∗
−1
1 b ∧ ∗−1

0 [−dT0 ] ∗1 B) + dT1 pd = 0,

∂B

∂t
−

1

Re Pm
d0 ∗

−1
0 [−dT0 ] ∗1 B + d0 ∗

−1
0 (u ∧ ∗1B) = 0,

∗2 d1 ∗
−1
1 u = 0,

∗2 d1B = 0.
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Conclusions

A conservative discretization for NS equations was derived
using DEC.

The scheme converges with second order for
structured/semi-structured meshes, and first order for
otherwise unstructured meshes.

The mass and vorticity were conserved up to machine
precision for all conducted test cases.

The kinetic energy converges with second order with the mesh
size and time step for the tested cases on
structured/semi-structured meshes.
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Conclusions:

A comparison between the circumcentric Hodge operator
versus the Galerkin and the barycentric Hodge operators on
surface simplicial meshes was presented.

The Galerkin and the barycentric Hodge operators reproduce
the convergence order of the circumcentric Hodge for both
Darcy flow and incompressible Navier-Stokes solutions.

A super-convergence behavior (almost second order) was
observed when using the barycentric Hodge star on a
sequence of non-Delaunay unstructured meshes generated
through sequential mesh subdivision.

In terms of the computational cost, the DEC solutions exhibit
a modest decrease in the linear system sparsity when using the
barycentric Hodge star operator.
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Conclusions:

A hybrid dual mesh is employed for meshes having relatively
small fraction of non-Delaunay triangles.

The hybrid Hodge star operator ∗1 converges as expected.

The inverse hybrid Hodge star operator ∗−1
1 converges even

with relatively high ratio of non-Delaunay triangles.

Preliminary DEC discretization of single fluid resistive MHD
presented.

Samtaney, PPPL, Jan 10 2017 CFD with DEC



Acknowledgment:

This research was supported by the KAUST Office of Competitive
Research Funds under Award No. URF/1/1401-01-01.

Samtaney, PPPL, Jan 10 2017 CFD with DEC



THANK YOU

Samtaney, PPPL, Jan 10 2017 CFD with DEC


